Respuesta :

The value of k is –6.

Solution:

Given equation:

[tex]$\frac{5 \cdot 5^{k}}{5^{-8}}=5^{3}[/tex]

To find the value of k:

[tex]$\frac{5 \cdot 5^{k}}{5^{-8}}=5^{3}[/tex]

Using exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]

[tex]$\frac{5^{1+k}}{5^{-8}}=5^{3}[/tex]

Using exponent rule: [tex]\frac{1}{a^{-m}} = a^{m}[/tex]

[tex]$ 5^{1+k} \cdot 5^{8}=5^{3}[/tex]

Using exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]

[tex]$ 5^{1+k+8}=5^{3}[/tex]

[tex]$ 5^{k+9}=5^{3}[/tex]

If the bases are same then, we can equate the powers of the bases.

i. e. If [tex]a^m = a^n[/tex] then m = n.

k + 9 = 3

Subtract 9 from both sides of the equation, we get

k = –6

Hence the value of k is –6.