The value of k is –6.
Solution:
Given equation:
[tex]$\frac{5 \cdot 5^{k}}{5^{-8}}=5^{3}[/tex]
To find the value of k:
[tex]$\frac{5 \cdot 5^{k}}{5^{-8}}=5^{3}[/tex]
Using exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]
[tex]$\frac{5^{1+k}}{5^{-8}}=5^{3}[/tex]
Using exponent rule: [tex]\frac{1}{a^{-m}} = a^{m}[/tex]
[tex]$ 5^{1+k} \cdot 5^{8}=5^{3}[/tex]
Using exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]
[tex]$ 5^{1+k+8}=5^{3}[/tex]
[tex]$ 5^{k+9}=5^{3}[/tex]
If the bases are same then, we can equate the powers of the bases.
i. e. If [tex]a^m = a^n[/tex] then m = n.
k + 9 = 3
Subtract 9 from both sides of the equation, we get
k = –6
Hence the value of k is –6.