Answer:
[tex]v=7.62\ m.s^{-1}[/tex]
Explanation:
Given:
where:
[tex]x=[/tex] distance in the +ve x-direction
We know:
[tex]F=m.a\\\Rightarrow a=\frac{F}{m}[/tex]
Now force change in force on the body:
[tex]F(x)=18-0.53(x'-x)[/tex]
[tex]F=18-0.53\times (14-0)[/tex]
[tex]F=10.58\ N[/tex]
Now the acceleration due to the force:
[tex]a=\frac{F}{m}[/tex]
[tex]a=\frac{10.58}{5.1}[/tex]
[tex]a=2.0745\ m.s^{-2}[/tex]
Now using equation of motion:
[tex]v^2=u^2+2a.x'[/tex]
[tex]v^2=0^2+2\times 2.0745\times 14[/tex]
[tex]v=7.62\ m.s^{-1}[/tex]