Respuesta :
Answer:
0.6604
Step-by-step explanation:
Given that a market research firm knows from historical data that telephone surveys have a 36% response rate.
Sample size of random sample = 280
We know for samples randomly drawn of large size sample proportion follows a normal distribution with mean= sample proportin and std error
= [tex]\sqrt{\frac{pq}{n} }[/tex]
Substitute p = 0.36 and q = 1-0.36= 0.64
p follows N with mean = 0.36 and std dev = [tex]\sqrt{\frac{0.36*0.64}{\sqrt{280} } } \\=0.0287[/tex]
Using normal distribution values we can find\
[tex]P(33.5p.c. < p < 39pc)\\= P(0.335<p<0.39)\\= F(0.39)-F(0.335)\\= 0.852183-0.191735\\=0.660448[/tex]
Answer:
Probability that the response rate will be between 33.5% and 39% = 0.66176 .
Step-by-step explanation:
We are given that a market research firm knows from historical data that telephone surveys have a 36% response rate.
The probability criterion we will use here is;
[tex]\frac{\hat p- p}{\sqrt{\frac{\hat p (1-\hat p)}{n} } }[/tex] ~ N(0,1)
Here, p = 0.36 and n = sample size = 280
Let [tex]\hat p[/tex] = response rate
So, P(0.335 <= [tex]\hat p[/tex] <= 0.39) = P([tex]\hat p[/tex] <= 0.39) - P([tex]\hat p[/tex] < 0.335)
P([tex]\hat p[/tex] <= 0.39) = P( [tex]\frac{\hat p- p}{\sqrt{\frac{\hat p (1-\hat p)}{n} } }[/tex] <= [tex]\frac{0.39- 0.36}{\sqrt{\frac{0.39 (1-0.39)}{280} } }[/tex] ) = P(Z <= 1.03) = 0.84849
P([tex]\hat p[/tex] < 0.335) = P( [tex]\frac{\hat p- p}{\sqrt{\frac{\hat p (1-\hat p)}{n} } }[/tex] < [tex]\frac{0.335- 0.36}{\sqrt{\frac{0.335 (1-0.335)}{280} } }[/tex] ) = P(Z < -0.89) = 1 - P(Z <= 0.89)
= 1 - 0.81327 = 0.18673
Therefore, P(0.335 <= [tex]\hat p[/tex] <= 0.39) = 0.84849 - 0.18673 = 0.66176
Hence, probability that the response rate will be between 33.5% and 39% is 0.66176 or 66.18 % .