Answer:
resulting strain will be 0.00322
Explanation:
given data
cross section = 10.5 mm × 13.7 mm
force = 2650 N
elastic modulus = 79 GPa
solution
we apply here elastic modulus that is express as
elastic modulus = [tex]\frac{stress}{strain}[/tex] ....................1
E = [tex]\frac{\sigma }{\epsilon }[/tex]
and here [tex]\sigma[/tex] = [tex]\frac{force}{area}[/tex]
[tex]\epsilon = \frac{\sigma }{E}[/tex]
[tex]\epsilon = \frac{F }{AE}[/tex]
[tex]\epsilon = \frac{34300}{10.8 \times 12.5 \times 10^{-6} \times 79 \times 10^9}[/tex]
[tex]\epsilon[/tex] = 0.00322
so resulting strain will be 0.00322