Answer:
[tex]9.198\times 10^6 m/s[/tex]
Explanation:
We are given that
Magnetic field, B=1.2 T
Radius of circular path, r=0.080 m
[tex]q_p=1.6\times 10^{-19} C[/tex]
[tex]m_p=1.67\times 10^{-27} kg[/tex]
[tex]\theta=90^{\circ}[/tex]
We have to find the speed of proton.
We know that
Magnetic force, F=[tex]qvBsin\theta[/tex]
According to question
Magnetic force=Centripetal force
[tex]q_pvBsin90^{\circ}=\frac{m_pv^2}{r}[/tex]
[tex]1.6\times 10^{-19}\times 1.2=\frac{1.67\times 10^{-27}v}{0.08}[/tex]
[tex]v=\frac{1.6\times 10^{-19}\times 1.2\times 0.08}{1.67\times 10^{-27}}[/tex]
[tex]v=9.198\times 10^6 m/s[/tex]