Respuesta :
Answer:
The 95% confidence interval for population mean is (72, 80).
Step-by-step explanation:
The (1 - α) % confidence interval for population mean (μ) is:
[tex]CI=\bar x\pm z_{\alpha /2}\frac{\sigma}{\sqrt{n}}[/tex]
The Margin of error for this confidence interval is:
[tex]MOE=z_{\alpha /2}\frac{\sigma}{\sqrt{n}}[/tex]
The confidence interval for μ can also be written as:
[tex]CI=\bar x\pm MOE[/tex]
Given:
[tex]\bar x=76\\MOE=4[/tex]
Compute the 95% confidence interval for population mean as follows:
[tex]CI=\bar x\pm MOE\\=76\pm4\\=(72, 80)[/tex]
Thus, the 95% confidence interval for population mean is (72, 80).
Answer:
[tex] \bar X \pm ME[/tex]
And if we find the limits we got:
[tex] 76-4 = 72[/tex]
[tex] 76 + 4 = 80[/tex]
So then the 95% confidence interval would be (72.0,80.0)
Step-by-step explanation:
Previous concepts
A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".
The margin of error is the range of values below and above the sample statistic in a confidence interval.
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
[tex]\bar X = 76[/tex] represent the sample mean for the sample
[tex]\mu[/tex] population mean (variable of interest)
s represent the sample standard deviation
n=49 represent the original sample size
Confidence =95% or 0.95
ME=4 represent the margin of error.
Solution to the problem
The confidence interval for the mean is given by the following formula:
[tex]\bar X \pm t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex] (1)
The margin of error is defined as:
[tex] ME= t_{\alpha/2}\frac{s}{\sqrt{n}}[/tex]
The formula for the confidence interval is equivalent to:
[tex] \bar X \pm ME[/tex]
And if we find the limits we got:
[tex] 76-4 = 72[/tex]
[tex] 76 + 4 = 80[/tex]
So then the 95% confidence interval would be (72.0,80.0)