Answer:a)False b)True c)False d)True
Step-by-step explanation:
Let's consider first that for us the set of the natural numbers is the set of the positive integers and the set of the non-negative numbers is know as the whole number or with notation [tex]N_0[/tex]. Then for
a) the N={1,2,3,...} and therefore the common members with A are only {1,2,3} making the statement false, only if stated to consider the set N as all the non-negative numbers the answer would be true, but otherwise it is standarized to understand N as the positive integers and [tex]N_0[/tex] as the non-negative integers.
b)The difference of sets is taking the elements in the first that do not belong to the second, then it would be to withdraw the only element C has, since 0 belongs to A, and therefore C would turn to be an empty set.
c)The set powers of a given set S, denoted P(S), is a set with sets as elements, every subset of S is an element of P(S). Then P(S) is always non-empty, since at least S belongs to P(S). Here [tex]P(C)=\{C, \emptyset \}[/tex], then [tex]P(C)\cup B=\{C, \emptyset ,1,2,3,\ldots \}\ne B[/tex], therefore the statement is false.
d)As explained in c) [tex]P(C)=\{C, \emptyset \},[/tex] then clearly C is an element of P(C), thus the affirmation is true.