Respuesta :
Here is the full question
How many moles of sodium acetate must be added to 2.0 L of 0.10 M acetic acid to give a solution that has a pH equal to 5.00? Ignore the volume change due to the addition of sodium acetate. Ka of acetic acid is 1.7×10-5.
Answer:
0.3396 moles
Explanation:
pH = pKA + log[tex]\frac{[acetate]}{[aceticacid]}[/tex]
[acetic acid] = 0.1 M
pH = 5.0
[tex]K_a[/tex] = [tex]1.7*10^{-5[/tex]
5.0 = -log ([tex]1.7*10^{-5[/tex]) + log [tex]\frac{[acetate]}{0.1}[/tex]
5.0 = 4.77 + log [acetate] + 1
5.0 = 5.77 + log [acetate]
- log [acetate] = 5.77 - 5.0
- log [acetate] = 0.77
log [acetate] = -0.77
[acetate] = log⁻¹ (-0.77)
[acetate] = 0.1698
∴ for 2L = 2 × 0.1698
= 0.3396 moles
The sodium acetate must be added to 2.0 L of 0.10 M acetic acid to give a solution that has a pH equal to 5.00 - 0.3396 moles
Given:
The concentration of acetic acid = 0.10 M
pH = 5.0
[tex]K_a[/tex] = [tex]1.7\times10^{-5[/tex]
Solution:
According to Hasselbalch equation:
[tex]pH=pKa + log\frac{[A^-]}{[HA]}\\\\or\\\\pH = pKa + log\frac{(acetate)}{(acetic acid)}[/tex]
5.0 = -log [tex](1.7\times10^{-5})[/tex] + log [tex]\frac{(acetate)}{(0.1)}[/tex]
5.0 = 4.77 + log [acetate] + 1
5.0 = 5.77 + log [acetate]
- log [acetate] = 5.77 - 5.0
- log [acetate] = 0.77
log [acetate] = -0.77
[acetate] = log⁻¹ (-0.77)
[acetate] = 0.1698
∴ for 2L = 2 × 0.1698
= 0.3396 moles
Thus, the sodium acetate must be added to 2.0 L of 0.10 M acetic acid to give a solution that has a pH equal to 5.00 - 0.3396 moles
Learn more:
https://brainly.com/question/20486415