1. A manufacturer of a printer determines that the mean number of days before a cartridge runs out of ink is 75 days, with a standard deviation of 6 days. Assuming a normal distribution, what is the probability that the number of days will be less than 67.5 days?

Respuesta :

Answer:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]

Step-by-step explanation:

Previous concepts

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".

The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".  

Solution to the problem

Let X the random variable that represent the number of days before cartridge runs out of a population, and for this case we know the distribution for X is given by:

[tex]X \sim N(75,6)[/tex]  

Where [tex]\mu=75[/tex] and [tex]\sigma=6[/tex]

We are interested on this probability

[tex]P(X<67.5)[/tex]

And the best way to solve this problem is using the normal standard distribution and the z score given by:

[tex]z=\frac{x-\mu}{\sigma}[/tex]

If we apply this formula to our probability we got this:

[tex]P(X<67.5)=P(\frac{X-\mu}{\sigma}<\frac{67.5-\mu}{\sigma})=P(Z<\frac{67.5-75}{6})=P(z<-1.25)[/tex]

And we can find this probability using the normal standard table or excel:

[tex]P(z<-1.25)=0.106[/tex]