Respuesta :

Answer:

The area of the rectangle is increasing at a rate of  [tex]22\ cm^2/s[/tex].

Step-by-step explanation:

Given : The width of a rectangle is increasing at a rate of 2 cm/ sec. While the length increases at 3 cm/sec.

To find : At what rate is the area increasing when w = 4 cm and I = 5 cm?

Solution :

The area of the rectangle with length 'l' and width 'w' is given by  [tex]A=l w[/tex]

Derivative w.r.t  't',

[tex]\frac{dA}{dt}=w\frac{dl}{dt}+l\frac{dw}{dt}[/tex]

Now, we have given

[tex]\frac{dl}{dt}=3\ cm/s[/tex]

[tex]l=5\ cm[/tex]

[tex]\frac{dw}{dt}=2\ cm/s[/tex]

[tex]w=4\ cm[/tex]

Substitute all the values,

[tex]\frac{dA}{dt}=(4)(3)+(5)(2)[/tex]

[tex]\frac{dA}{dt}=12+10[/tex]

[tex]\frac{dA}{dt}=22\ cm^2/s[/tex]

Therefore, the area of the rectangle is increasing at a rate of  [tex]22\ cm^2/s[/tex].

The area of rectangle is increasing at rate of 22 cm/ second.

Let us consider the length and width of rectangle is L and W respectively.

Given that,  [tex]\frac{dW}{dt}=2cm/s,\frac{dL}{dt}=3cm/s[/tex]

Area of rectangle is,

                                   [tex]A = L *W[/tex]

Differentiate above expression with respect to time t.

     [tex]\frac{dA}{dt} =L\frac{dW}{dt}+W\frac{dL}{dt} \\\\\frac{dA}{dt}=2L+3W[/tex]

substituting w = 4cm and L = 5cm in above expression.

   [tex]\frac{dA}{dt} =2(5)+3(4)=22cm/s[/tex]

Thus, The area of rectangle is increasing at rate of 22 cm/ second.

Learn more:

https://brainly.com/question/954654