Respuesta :
Answer:
The area of the rectangle is increasing at a rate of [tex]22\ cm^2/s[/tex].
Step-by-step explanation:
Given : The width of a rectangle is increasing at a rate of 2 cm/ sec. While the length increases at 3 cm/sec.
To find : At what rate is the area increasing when w = 4 cm and I = 5 cm?
Solution :
The area of the rectangle with length 'l' and width 'w' is given by [tex]A=l w[/tex]
Derivative w.r.t 't',
[tex]\frac{dA}{dt}=w\frac{dl}{dt}+l\frac{dw}{dt}[/tex]
Now, we have given
[tex]\frac{dl}{dt}=3\ cm/s[/tex]
[tex]l=5\ cm[/tex]
[tex]\frac{dw}{dt}=2\ cm/s[/tex]
[tex]w=4\ cm[/tex]
Substitute all the values,
[tex]\frac{dA}{dt}=(4)(3)+(5)(2)[/tex]
[tex]\frac{dA}{dt}=12+10[/tex]
[tex]\frac{dA}{dt}=22\ cm^2/s[/tex]
Therefore, the area of the rectangle is increasing at a rate of [tex]22\ cm^2/s[/tex].
The area of rectangle is increasing at rate of 22 cm/ second.
Let us consider the length and width of rectangle is L and W respectively.
Given that, [tex]\frac{dW}{dt}=2cm/s,\frac{dL}{dt}=3cm/s[/tex]
Area of rectangle is,
[tex]A = L *W[/tex]
Differentiate above expression with respect to time t.
[tex]\frac{dA}{dt} =L\frac{dW}{dt}+W\frac{dL}{dt} \\\\\frac{dA}{dt}=2L+3W[/tex]
substituting w = 4cm and L = 5cm in above expression.
[tex]\frac{dA}{dt} =2(5)+3(4)=22cm/s[/tex]
Thus, The area of rectangle is increasing at rate of 22 cm/ second.
Learn more:
https://brainly.com/question/954654