Answer:
a) [tex]Z = 1.5[/tex]
b) [tex]Z = -1.5[/tex]
c) [tex]Z = 0[/tex]
d) [tex]Z = 3[/tex]
Step-by-step explanation:
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
In this problem, we have that:
[tex]\mu = 170, \sigma = 20[/tex]
a. 200 pounds.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{200 - 170}{20}[/tex]
[tex]Z = 1.5[/tex]
b. 140 pounds.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{140 - 170}{20}[/tex]
[tex]Z = -1.5[/tex]
c. 170 pounds.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{170 - 170}{20}[/tex]
[tex]Z = 0[/tex]
d. 230 pounds.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{230 - 170}{20}[/tex]
[tex]Z = 3[/tex]