contestada

A simply supported wood beam with a span of L = 15 ft supports a uniformly distributed load of w0 = 270 lb/ft. The allowable bending stress of the wood is 1.95 ksi. If the aspect ratio of the solid rectangular wood beam is specified as h/b = 1.75, calculate the minimum width b that can be used for the beam.

Respuesta :

Answer:

The minimum width is [tex]b = 4.32 \ in[/tex]

Explanation:

The free body diagram is shown on the first uploaded image

The Summation of the moment about A  is equal to 0 from the diagram we can see its wedged

     i.e [tex]\sum M_A = 0[/tex]

        [tex]C_y *L = 270 \frac{2L}{3} *\frac{L}{3}[/tex]

       [tex]C_y *L -270 \frac{2L}{3} *\frac{L}{3} = 0[/tex]

Given from the question that L = 15 ft

           [tex]C_y *15 -270 * \frac{2*15}{3}*\frac{15}{3} =0[/tex]

          [tex]C_y = 900lb[/tex]

        => [tex]C_y =900lb \ (upward)[/tex]

The net upward force experienced by the beam = 0

i.e          [tex]\sum F_y = 0[/tex]   because of the canceling downward force

              [tex]A_y +C_y = 270 * \frac{2L}{3}[/tex]

                            [tex]A_y + 900 = 270 * 10[/tex]

                             [tex]A_y = 1800lb[/tex]

The maximum bending always occurs where the shear force is zero

           [tex]A_y - 270*x =0[/tex]

           [tex]1800 - 270 * x = 0[/tex]

           [tex]x = \frac{1800}{270} =6.67ft[/tex]

To obtain the maximum bending moment

     [tex]M_{max} = A_y *6.67 - 270 *6.67 *\frac{6.67}{2}[/tex]

     [tex]M_{max} = 1800 *6.67 - 270*6.67*\frac{6.67}{2}[/tex]

               [tex]=6000\ lb.ft[/tex]

To obtain the width

         [tex]\frac{M}{I} =\frac{\sigma}{y}[/tex]

The equation above is the bending equation

Where M is the bending moment  [tex]= 6000(12) \ lb in[/tex]

Note: the multiplication by 12 is to convert the value to inches  

I is the moment of inertia [tex]=\frac{bh^3}{12}[/tex]

Note: the division by 12 is to convert the value to inches

and [tex]\sigma[/tex] is the bending stress = 1.95 ×1000 ksi

Then y is the distance from natural axis = [tex]=\frac{h}{2}[/tex]

Substituting this into the formula we have

         [tex]\frac{6000(12)}{\frac{bh^3}{12} } = \frac{1.95(1000)}{\frac{h}{2} }[/tex]

     [tex]\frac{6000(12)}{\frac{bh^2}{6} } =1.95 * 1000[/tex]

  given that [tex]\frac{h}{b} = 1.75[/tex]

                =>h = 1.75 b

     Substituting into the equation

             [tex]\frac{6000(12)}{\frac{b(1.75b)^2}{6} } = 1.95(1000)[/tex]

         [tex]\frac{6000(12)}{1} \frac{6}{3.063b^3} = 1750[/tex]

          [tex]\frac{432000}{3.063b^3} =1750[/tex]

         [tex]3.06b^3 =\frac{432000}{1750}[/tex]

         [tex]3.063b^3 = 246.86[/tex]

         [tex]b^3 = 80.593[/tex]

        [tex]b = \sqrt[3]{80.593}[/tex]

         [tex]b = 4.32 \ in[/tex]

       

       

Ver imagen okpalawalter8