Respuesta :
Answer:
The minimum width is [tex]b = 4.32 \ in[/tex]
Explanation:
The free body diagram is shown on the first uploaded image
The Summation of the moment about A is equal to 0 from the diagram we can see its wedged
i.e [tex]\sum M_A = 0[/tex]
[tex]C_y *L = 270 \frac{2L}{3} *\frac{L}{3}[/tex]
[tex]C_y *L -270 \frac{2L}{3} *\frac{L}{3} = 0[/tex]
Given from the question that L = 15 ft
[tex]C_y *15 -270 * \frac{2*15}{3}*\frac{15}{3} =0[/tex]
[tex]C_y = 900lb[/tex]
=> [tex]C_y =900lb \ (upward)[/tex]
The net upward force experienced by the beam = 0
i.e [tex]\sum F_y = 0[/tex] because of the canceling downward force
[tex]A_y +C_y = 270 * \frac{2L}{3}[/tex]
[tex]A_y + 900 = 270 * 10[/tex]
[tex]A_y = 1800lb[/tex]
The maximum bending always occurs where the shear force is zero
[tex]A_y - 270*x =0[/tex]
[tex]1800 - 270 * x = 0[/tex]
[tex]x = \frac{1800}{270} =6.67ft[/tex]
To obtain the maximum bending moment
[tex]M_{max} = A_y *6.67 - 270 *6.67 *\frac{6.67}{2}[/tex]
[tex]M_{max} = 1800 *6.67 - 270*6.67*\frac{6.67}{2}[/tex]
[tex]=6000\ lb.ft[/tex]
To obtain the width
[tex]\frac{M}{I} =\frac{\sigma}{y}[/tex]
The equation above is the bending equation
Where M is the bending moment [tex]= 6000(12) \ lb in[/tex]
Note: the multiplication by 12 is to convert the value to inches
I is the moment of inertia [tex]=\frac{bh^3}{12}[/tex]
Note: the division by 12 is to convert the value to inches
and [tex]\sigma[/tex] is the bending stress = 1.95 ×1000 ksi
Then y is the distance from natural axis = [tex]=\frac{h}{2}[/tex]
Substituting this into the formula we have
[tex]\frac{6000(12)}{\frac{bh^3}{12} } = \frac{1.95(1000)}{\frac{h}{2} }[/tex]
[tex]\frac{6000(12)}{\frac{bh^2}{6} } =1.95 * 1000[/tex]
given that [tex]\frac{h}{b} = 1.75[/tex]
=>h = 1.75 b
Substituting into the equation
[tex]\frac{6000(12)}{\frac{b(1.75b)^2}{6} } = 1.95(1000)[/tex]
[tex]\frac{6000(12)}{1} \frac{6}{3.063b^3} = 1750[/tex]
[tex]\frac{432000}{3.063b^3} =1750[/tex]
[tex]3.06b^3 =\frac{432000}{1750}[/tex]
[tex]3.063b^3 = 246.86[/tex]
[tex]b^3 = 80.593[/tex]
[tex]b = \sqrt[3]{80.593}[/tex]
[tex]b = 4.32 \ in[/tex]