Answer:
the final velocity of the cart is 5.037m/s
Explanation:
Using the conservation of energy
[tex]T_a + V_a = T_b + V_b[/tex]
[tex]T_a = \frac{1}{2} (m_c + m_b)v_a^2[/tex]
[tex]T_a= \frac{1}{2} (3 + 0.5)(0)^2[/tex]
= 0
[tex]V_a = (m_c + m_b)gh_a[/tex]
[tex]V_a = (3 + 0.5) * 9.81 * 1.24[/tex]
[tex]= 42.918J[/tex]
[tex]T _b = \frac{1}{2} (3 + 0.5)v_b^2 \\\\ = 1.75v_b^2[/tex]
[tex]V_b = (3 + 0.5) * 9.81 * 0\\ = 0[/tex]
[tex]T_a + V_a = T_b + V_b\\ 0 + 12.918 = 1.75v_b^2 + 0\\v_b = 4.95m/s[/tex]
Using the conservation of linear momentum
[tex](m_c + m_b)v_B = m_cv_c + m_bv_b\\(3 + 0.5) * 4.95 = 3v_c - 0.5v_b\\17.33 = 3v_c - 0.5v_b\\v_b = 6v_c - 34.66 ...............(1)[/tex]
[tex]Utilizing the relative velocity relation = v_b - v_c\\-0.6 = -v_b - v_c\\v_b = 0.6 - v_c (2)[/tex]
equate (1) and (2)
[tex]6v_c - 34.66 = 0.6 - v_c\\7v_c = 35.26\\v_c = 5.037m/s[/tex]
the final velocity of the cart is 5.037m/s