P7.16 A thin flat plate 55 by 110 cm is immersed in a 6-m/s stream of SAE 10 oil at 20C. Compute the total friction drag if the stream is parallel to (a) the long side and (b) the short side.

Respuesta :

Answer:

a

The total friction drag for the long side of the plate is 107 N

b

The total friction drag for the long side of the plate is 151.4 N

Explanation:

The first question is to obtain the friction drag when the fluid i parallel to the long side of the plate

The block representation of the this problem is shown on the first uploaded image  

Where the U is the initial velocity = 6 m/s

    So the equation we will be working with is

               [tex]F = \frac{1}{2} \rho C_fAU^2[/tex]

    Where [tex]\rho[/tex] is the density of SAE 10W = [tex]870\ kg/m^3[/tex] This is obtained from the table of density at 20° C

                [tex]C_f[/tex] is the friction drag coefficient

   This coefficient is dependent on the Reynolds number if the Reynolds number is less than [tex]5*10^5[/tex] then the flow is of laminar type and

          [tex]C_f[/tex]  = [tex]\frac{1.328}{\sqrt{Re} }[/tex]

But if the Reynolds number is greater than [tex]5*10^5[/tex] the flow would be of Turbulent type and

         [tex]C_f = \frac{0.074}{Re_E^{0.2}}[/tex]

Where Re is the Reynolds number

   To obtain the  Reynolds number  

                                      [tex]Re = \frac{\rho UL}{\mu}[/tex]

          where L is the length of the long side = 110 cm = 1.1 m

 and [tex]\mu[/tex] is the Dynamic viscosity of SAE 10W oil [tex]= 1.04*10^{-1} kg /m.s[/tex]

  This is gotten from the table of Dynamic viscosity of oil

  So        

                    [tex]Re = \frac{870 *6*1.1}{1.04*10^{-1}}[/tex]

                          [tex]= 55211.54[/tex]

Since            55211.54 < [tex]5.0*10^5[/tex]

Hence

                    [tex]C_f = \frac{1.328}{\sqrt{55211.54} }[/tex]

                          [tex]= 0.00565[/tex]

                 [tex]A[/tex] is the area of the plate  = [tex]\frac{ (110cm)(55cm)}{10000}[/tex] =[tex]0.55m^2[/tex]

Since the area is immersed totally it should be multiplied by 2 i.e the bottom face and the top face are both immersed in the fluid

                [tex]F = \frac{1}{2} \rho C_f(2A)U^2[/tex]

                [tex]F =\frac{1}{2} *870 *0.00565*(2*0.55)*6^2[/tex]

                 [tex]F = 107N[/tex]

Considering the short side

            To obtain the Reynolds number

                      [tex]Re = \frac{\rho U b}{\mu}[/tex]

Here b is the short side

                        [tex]Re =\frac{870*6*0,55}{1.04*10^{-1}}[/tex]

                              [tex]=27606[/tex]

Since the value obtained is not greater than [tex]5*10^5[/tex] then the flow is laminar

   And

              [tex]C_f = \frac{1.328}{\sqrt{Re} }[/tex]

                    [tex]= \frac{1.328}{\sqrt{27606} }[/tex]

                   [tex]= 0.00799[/tex]

The next thing to do is to obtain the total friction drag

             [tex]F = \frac{1}{2} \rho C_f(2A)U^2[/tex]

      Substituting values

           [tex]F = \frac{1}{2} * 870 * 0.00799 * 2( 0.55) * 6^2[/tex]

                [tex]= 151.4 N[/tex]

Ver imagen okpalawalter8