Respuesta :

caylus
Hello,
y=3x²+bx+3/4+4
= 3(x²+2b/6*x+b²/36)+19/4-b²/12
=3(x+b/6)²+19/4-b²/12
==>-b/6=3/2==>b=-9


Answer:

The value of b is -9.

Step-by-step explanation:

We are given a equation as:

[tex]f(x)=\frac{3}{4}+3x^2+bx+4[/tex]

[tex]f(x)=3x^2+bx+\frac{19}{4}[/tex]

clearly the graph of this function will be a parabola.

for any quadratic equation of the type [tex]f(x)=ax^2+bx+c[/tex]

the equation of axis of symmetry is given by:

[tex]x=\frac{-b}{2a}[/tex]  , here a=3 and b=b

also we are given axis of symmetry as [tex]x=\frac{3}{2}[/tex]

that means [tex]\frac{-b}{2\times3}=\frac{3}{2}[/tex]

[tex]b=-9[/tex]