Respuesta :
Hello,
y=3x²+bx+3/4+4
= 3(x²+2b/6*x+b²/36)+19/4-b²/12
=3(x+b/6)²+19/4-b²/12
==>-b/6=3/2==>b=-9
y=3x²+bx+3/4+4
= 3(x²+2b/6*x+b²/36)+19/4-b²/12
=3(x+b/6)²+19/4-b²/12
==>-b/6=3/2==>b=-9
Answer:
The value of b is -9.
Step-by-step explanation:
We are given a equation as:
[tex]f(x)=\frac{3}{4}+3x^2+bx+4[/tex]
[tex]f(x)=3x^2+bx+\frac{19}{4}[/tex]
clearly the graph of this function will be a parabola.
for any quadratic equation of the type [tex]f(x)=ax^2+bx+c[/tex]
the equation of axis of symmetry is given by:
[tex]x=\frac{-b}{2a}[/tex] , here a=3 and b=b
also we are given axis of symmetry as [tex]x=\frac{3}{2}[/tex]
that means [tex]\frac{-b}{2\times3}=\frac{3}{2}[/tex]
[tex]b=-9[/tex]