Respuesta :
Answer:
The time is 16 min.
Explanation:
Given that,
Time = 120 sec
We need to calculate the moment of inertia
Using formula of moment of inertia
[tex]I=\dfrac{1}{2}MR^2[/tex]
If the disk had twice the radius and twice the mass
The new moment of inertia
[tex]I'=\dfrac{1}{2}\times2M\times(2R)^2[/tex]
[tex]I'=8I[/tex]
We know,
The torque is
[tex]\tau=F\times R[/tex]
We need to calculate the initial rotation acceleration
Using formula of acceleration
[tex]\alpha=\dfrac{\tau}{I}[/tex]
Put the value in to the formula
[tex]\alpha=\dfrac{F\times R}{\dfrac{1}{2}MR^2}[/tex]
[tex]\alpha=\dfrac{2F}{MR}[/tex]
We need to calculate the new rotation acceleration
Using formula of acceleration
[tex]\alpha'=\dfrac{\tau}{I'}[/tex]
Put the value in to the formula
[tex]\alpha=\dfrac{F\times R}{8\times\dfrac{1}{2}MR^2}[/tex]
[tex]\alpha=\dfrac{2F}{8MR}[/tex]
[tex]\alpha=\dfrac{\alpha}{8}[/tex]
Rotation speed is same.
We need to calculate the time
Using formula angular velocity
[tex]\Omega=\omega'[/tex]
[tex]\alpha\time t=\alpha'\times t'[/tex]
Put the value into the formula
[tex]\alpha\times120=\dfrac{\alpha}{8}\times t'[/tex]
[tex]t'=960\ sec[/tex]
[tex]t'=16\ min[/tex]
Hence, The time is 16 min.