Respuesta :

6x^2 + 12 x -7 =0

a=6
b=12
c=-7

[tex]x= \frac{-b +/- \sqrt{b^{2} -4ac}}{2a}[/tex]

x = {-12 +/- √[12^2 - 4(6)(-7)]} / [2(6)]

x=  0.472

x = -2.472

we have

[tex]f(x)=6x^{2}+12x-7[/tex]

Equate the function to zero

[tex]6x^{2}+12x-7=0[/tex]

Group terms that contain the same variable, and move the constant to the opposite side of the equation

[tex]6x^{2}+12x=7[/tex]

Factor the leading coefficient

[tex]6(x^{2}+2x)=7[/tex]

Complete the square. Remember to balance the equation by adding the same constants to each side.

[tex]6(x^{2}+2x+1)=7+6[/tex]

[tex]6(x^{2}+2x+1)=13[/tex]

Rewrite as perfect squares

[tex]6(x+1)^{2}=13[/tex]

[tex](x+1)^{2}=13/6[/tex]

Square root both sides

[tex]x+1=(+/-)\sqrt{\frac{13}{6}}[/tex]

[tex]x=-1(+/-)\sqrt{\frac{13}{6}}[/tex]

[tex]x1=-1+\sqrt{\frac{13}{6}}[/tex]

[tex]x2=-1-\sqrt{\frac{13}{6}}[/tex]

therefore

the answer is

The zeros of the quadratic equation are

[tex]x1=-1+\sqrt{\frac{13}{6}}[/tex]

[tex]x2=-1-\sqrt{\frac{13}{6}}[/tex]