Respuesta :
Answer:
a. Percentage of scores less than 100::::: 50%
-----------------------------------------------------
b. Relative frequency of scores less than 120:::(50+34)%
-----------------------------------------------------
c. Percentage of scores less than 140:::::(50+47.5)%
-----------------------------------------------------
d. Percentage of scores less than 80:::::::(50-34)%
--------------------------------------------------------
e. Relative frequency of scores less than 60::::(50-47.5)%
--------------------------------------------------------
f. Percentage of scores greater than 120:::(50-34)%
==========================================================
Step-by-step explanation:
The percentages will be "50.0%", "16.0%" and "81.5%". A further solution is provided below.
According to the question,
Mean,
- 80
Standard deviation,
- 15
(a)
The total area curve,
= 1.00
Half area under the curve,
= 0.500
then,
→ [tex]P (X< 80) = 0.500[/tex]
or,
→ [tex]= 50.0[/tex] (%)
(b)
As we know,
→ [tex]Mean +1\times Standard \ deviation= 80+1\times 15[/tex]
[tex]= 80+15[/tex]
[tex]= 95[/tex]
According to 68-95-99.7 rule,
The remaining area of both sides will be:
= [tex]100-68[/tex]
= [tex]32[/tex] (%)
hence,
Remaining area of right side will be:
→ [tex]P(X> 95)[/tex] = [tex]\frac{32}{2}[/tex]
= [tex]16[/tex] (%)
(c)
We have,
- [tex]P(X<95) = 0.16[/tex]
So,
→ [tex]P(X< 95)=1-0.16[/tex]
[tex]= 0.84[/tex]
Now,
→ [tex]Mean-2\times Standard \ deviation= 80-2\times 15[/tex]
[tex]=80-30[/tex]
[tex]= 50[/tex]
According to 68-95-99.7 rule,
Remaining area of both sides will be:
= [tex]1-.95[/tex]
= [tex]0.05[/tex]
Area remaining at left,
= [tex]\frac{0.05}{2}[/tex]
= [tex]0.025[/tex]
So, [tex]P(X<50) = 0.025[/tex]
hence,
→ [tex]P(50<X<95) = P(X<95)-P(X<50)[/tex]
[tex]= 0.84-0.025[/tex]
[tex]= 0.815[/tex]
or,
[tex]= 81.5[/tex] (%)
Thus the above answers are correct.
Learn more:
https://brainly.com/question/15242040