Explanation:
As the formula is as follows.
D = [tex]D_{o} exp (\frac{-Q_{d}}{RT})[/tex]
where, D = diffusion coefficient
[tex]D_{o}[/tex] = constant
T = temperature
R = gas constant
[tex]Q_{d}[/tex] = activation energy
For T = 1400 K,
[tex]D_{1} = D_{o} exp (\frac{-Q_{d}}{R \times 1400})[/tex]
For T = 1100 K,
[tex]D_{1} = D_{o} exp (\frac{-Q_{d}}{R \times 1100})[/tex]
Now,
[tex]\frac{D_{1}}{D_{2}} = exp[\frac{-Q_{d}}{1400 R} + \frac{Q}{1100 R}][/tex]
[tex]\frac{6.25 \times 10^{-11}}{D_{2}} = exp [\frac{-Q_{d}}{R}(\frac{-300}{1400 \times 1100})][/tex]
[tex]\frac{6.25 \times 10^{-11}}{D_{2}}[/tex] = exp (2.6)
= 13.46
[tex]D_{2} = \frac{6.25 \times 10^{-11}}{13.46}[/tex]
= [tex]4.64 \times 10^{-12} m^{2}/s[/tex]
Thus, we can conclude that the diffusion coefficient at 1100 K is [tex]4.64 \times 10^{-12} m^{2}/s[/tex].