Answer:
[tex]P(Y_1+Y_2)=0.0073[/tex]
Step-by-step explanation:
Let [tex]Y_i[/tex] be a random variable, defined as weekly demand, with the parameters[tex]\mu=1000 \ and\ \sigma=200[/tex]. Therefore, the probability that total demands in the next two weeks, [tex]Y_1 \ and \ Y_2[/tex], exceeds 2,200 is denoted as[tex]P(Y_1+Y_2)[/tex]
[tex]P(Y_1+Y_2)=P(Y_1+Y_2>2200)\\=P(Y_1+Y_2-\mu_1-\mu_2>2200-\mu_1-\mu_2)\\=P(\frac{Y_1+Y_2-\mu_1-\mu_2}{\sqrt(\sigma_1^2+\sigma_2^2}>\frac{2200-\mu_1-\mu_2}{\sqrt(\sigma_1^2+\sigma_2^2})\\=P(z>\frac{2200-2000}{\sqrt(40000+40000})\\=P (z ${data-answer}gt;2.24)\\=1-P(z ${data-answer}gt;2.24)=1-0.9927=0.0073[/tex]
P(Y1+Y2)=0.0073