Step-by-step explanation:
[tex]\because {\pi}^{c} = 180 \degree \\ \\ \therefore \: {1}^{c} = \frac{180 \degree }{\pi} \\ \\ \therefore \: {5}^{c} = 5 \times \frac{180 \degree }{\pi} \\ \\ \therefore \: {5}^{c} = \frac{900 \degree }{\pi} \\ \\ \therefore \: {5}^{c} = \frac{900 \degree }{ \frac{22}{7} } \\ \\ \therefore \: {5}^{c} = \frac{900 \degree \times 7 }{22} \\ \\ \therefore \: {5}^{c} = \frac{6300}{22} \\ \\ \therefore \: {5}^{c} = 286.363636\degree \\ \\ \\ \huge \red{ \boxed{\therefore \: {5}^{c} = 286.4\degree }}[/tex]