Respuesta :
For this case we have the following quadratic equation:
[tex]7x ^ 2 = 9 + x [/tex]
Rewriting the equation we have:
[tex]7x ^ 2 - x - 9 = 0 [/tex]
The quadratic formula to solve the equation is:
[tex]x = \frac{-b+/-\sqrt{b^2-4ac} }{2a} [/tex]
Where,
[tex]a = 7 b = -1 c = -9[/tex]
Substituting values we have:
[tex]x = \frac{-(-1)+/-\sqrt{(-1)^2-4(7)(-9)} }{2(7)} [/tex]
Answer:
An equation that shows the quadratic formula used correctly to solve is:
[tex]x = \frac{-(-1)+/-\sqrt{(-1)^2-4(7)(-9)} }{2(7)} [/tex]
[tex]7x ^ 2 = 9 + x [/tex]
Rewriting the equation we have:
[tex]7x ^ 2 - x - 9 = 0 [/tex]
The quadratic formula to solve the equation is:
[tex]x = \frac{-b+/-\sqrt{b^2-4ac} }{2a} [/tex]
Where,
[tex]a = 7 b = -1 c = -9[/tex]
Substituting values we have:
[tex]x = \frac{-(-1)+/-\sqrt{(-1)^2-4(7)(-9)} }{2(7)} [/tex]
Answer:
An equation that shows the quadratic formula used correctly to solve is:
[tex]x = \frac{-(-1)+/-\sqrt{(-1)^2-4(7)(-9)} }{2(7)} [/tex]