Respuesta :

Answer:

Therefore, the equation represents the line that passes through points B and C on the graph will be:

                                             [tex]y=-2x-6[/tex]

Step-by-step explanation:

From the diagram, it is clear that

  • the point B is (-4, 2)
  • the point C is (-2, -2)

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-4,\:2\right),\:\left(x_2,\:y_2\right)=\left(-2,\:-2\right)[/tex]

[tex]m=\frac{-2-2}{-2-\left(-4\right)}[/tex]

[tex]m=-2[/tex]

Substituting [tex]m = -2[/tex] and [tex]\left(x_1,\:y_1\right)=\left(-4,\:2\right)[/tex] in the point slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

Thus the equation of line becomes

[tex]y-2=-2\left(x-\left(-4\right)\right)[/tex]

[tex]y-2=-2\left(x+4\right)[/tex]

[tex]y-2=-2x-8[/tex]

[tex]y=-2x-6[/tex]

Therefore, the equation represents the line that passes through points B and C on the graph will be:

                                             [tex]y=-2x-6[/tex]

Answer:y= negative 2x minus 6

Step-by-step explanation: