Respuesta :
Answer:
[tex]\frac{F_e}{F_g} = 2.3 \times 10^{18}[/tex]
Explanation:
The gravitational force is given by Newton's Law of Gravity:
[tex]F_g = \frac{Gm_1m_2}{r^2}[/tex]
The electrostatic force is given by Coulomb's Law:
[tex]F_e = \frac{kq_1q_2}{r^2}[/tex]
The ratio between these two forces is
[tex]\frac{F_e}{F_g} = \frac{\frac{kq_1q_2}{r^2}}{\frac{Gm_1m_2}{r^2}} = \frac{kq_1q_2}{Gm_1m_2} = \frac{(8.99\times 10^{-12})(1.6\times 10^{-19})(1.6 \times 10^{-19})}{(6.67\times 10^{-11})(9.1 \times 10^{-31})(1.6 \times 10^{-27})} = 2.3 \times 10^{18}[/tex]
Complete Question:
Determine the ratio of the electrostatic force to the gravitational force between a proton and electron, FE/FG.
Note : k = 8.99 × 10⁹ N.m²/C² ; G = 6.672 x 10⁻¹¹ Nm²/kg²; me = 9.109 × 10⁻³¹ kg and mp = 1.672 × 10⁻²⁷kg.
Answer:
FE/FG = 2.3 x 10³⁹
Explanation:
According to Coulomb's law, the electrostatic force ([tex]F_{E}[/tex]) between two particles is given as;
[tex]F_{E}[/tex] = k x [tex]\frac{Q_1 * Q_2}{r^2 }[/tex] --------------------(i)
Where;
k = electric constant = 8.99 x 10⁹Nm²/C²
Q₁ = the charge of particle 1
Q₂ = the charge of particle 2
r = the distance of separation between the two particles
Also, according to Newton's law of gravitational force, the gravitational force ([tex]F_{G}[/tex]) between two particles is given as;
[tex]F_{G}[/tex] = G x [tex]\frac{M_{1} * M_2}{r^{2} }[/tex] --------------------(ii)
Where;
G = gravitational constant = 6.672 x 10⁻¹¹Nm²/kg²
M₁ = mass of particle 1
M₂ = mass of particle 2
r = distance of separation between the two particles
For clarity, we will calculate [tex]F_{E}[/tex] and [tex]F_{G}[/tex] separately before finding their ratio.
From the question;
The particles are a proton (particle 1) and an electron (particle 2) with the following details;
Q₁ = charge of proton = 1.6 x 10⁻¹⁹C
Q₂ = charge of electron = -1.6 x 10⁻¹⁹C
M₁ = mass of proton = mp = 1.672 × 10⁻²⁷kg
M₂ = mass of electron = me = 9.109 × 10⁻³¹kg
Substitute the values of k, Q₁ and Q₂ into equation (i) as follows;
[tex]F_{E}[/tex] = 8.99 x 10⁹ x [tex]\frac{(1.6*10^{-19}) * ( -1.6* 10^{-19})}{r^2 }[/tex]
[tex]F_{E}[/tex] = 8.99 x 10⁹ x [tex]\frac{(2.56*10^{-38})}{r^2 }[/tex] [negative sign can be discarded]
[tex]F_{E}[/tex] = [tex]\frac{(23.01*10^{-29})}{r^2 }[/tex]
Also, substitute the values of G, M₁ and M₂ into equation (ii) as follows;
[tex]F_{G}[/tex] = 6.67 x 10⁻¹¹ x [tex]\frac{(1.672*10^{-27}) * (9.109* 10^{-31})}{r^2 }[/tex]
[tex]F_{G}[/tex] = 6.67 x 10⁻¹¹ x [tex]\frac{(15.23*10^{-58})}{r^2 }[/tex]
[tex]F_{G}[/tex] = [tex]\frac{(101.58*10^{-69})}{r^2 }[/tex]
The ratio [tex]F_{E}[/tex] / [tex]F_{G}[/tex] is therefore;
[tex]F_{E}[/tex] / [tex]F_{G}[/tex] = [tex]\frac{(23.01*10^{-29})}{r^2 }[/tex] / [tex]\frac{(101.58*10^{-69})}{r^2 }[/tex]
[tex]F_{E}[/tex] / [tex]F_{G}[/tex] = [tex]\frac{(23.01*10^{-29})}{(101.58*10^{-69})}[/tex]
[tex]F_{E}[/tex] / [tex]F_{G}[/tex] = [tex]{(0.23*10^{40})}[/tex]
[tex]F_{E}[/tex] / [tex]F_{G}[/tex] = [tex]{(2.3*10^{39})}[/tex]
Therefore, the ratio is 2.3 x 10³⁹