Answer:
The point of intersection of these two lines will be: (3, 14)
Step-by-step explanation:
Given the equations
[tex]y-6x=-4[/tex]
[tex]y-2x=8[/tex]
Solving the system of the equations
[tex]\begin{bmatrix}y-6x=-4\\ y-2x=8\end{bmatrix}[/tex]
[tex]\mathrm{Isolate}\:y\:\mathrm{for}\:y-6x=-4:\quad y=-4+6x[/tex]
[tex]\mathrm{Subsititute\:}y=-4+6x[/tex]
[tex]\begin{bmatrix}-4+6x-2x=8\end{bmatrix}[/tex]
[tex]\mathrm{Isolate}\:x\:\mathrm{for}\:-4+6x-2x=8[/tex]
[tex]-4+6x-2x=8[/tex]
[tex]4x=12[/tex]
[tex]\frac{4x}{4}=\frac{12}{4}[/tex]
[tex]x=3[/tex]
[tex]\mathrm{For\:}y=-4+6x[/tex]
[tex]\mathrm{Subsititute\:}x=3[/tex]
[tex]y=-4+6\cdot \:3[/tex]
[tex]y=14[/tex]
[tex]\mathrm{The\:solutions\:to\:the\:system\:of\:equations\:are:}[/tex]
[tex]x=3,\:y=14[/tex]
Therefore, the point of intersection of these two lines will be: (3, 14)