Respuesta :

The equation of the circle is [tex](x-6)^{2}+(y-3)^{2}=2[/tex]

Explanation:

The endpoints of the diameter of a circle are [tex](5,4)[/tex] and [tex](7,2)[/tex]

We need to determine the equation of the circle.

The center of the circle can be calculated using midpoint formula.

Midpoint = [tex](\frac{x_1+x_2}{2} ,\frac{y_1+y_2}{2} )[/tex]

Thus, we have,

Center = [tex](\frac{5+7}{2} ,\frac{4+2}{2} )[/tex]

            [tex]=(\frac{12}{2} ,\frac{6}{2} )[/tex]

            [tex]=(6,3)[/tex]

Thus, the center of the circle is [tex](6,3)[/tex]

The radius of the circle can be determined using the distance formula,

[tex]r=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}[/tex]

Substituting the center [tex](6,3)[/tex] and the endpoint [tex](5,4)[/tex], we have,

[tex]r=\sqrt{\left(5-6\right)^{2}+\left(4-3\right)^{2}}[/tex]

[tex]r=\sqrt{\left(-1\right)^{2}+\left(1\right)^{2}}[/tex]

[tex]r=\sqrt{1+1}[/tex]

[tex]r=\sqrt{2}[/tex]

Thus, the radius of the circle is [tex]\sqrt{2}[/tex]

The standard form of the equation of the circle is

[tex](x-a)^{2}+(y-b)^{2}=r^{2}[/tex]

Substituting [tex](6,3)[/tex] and [tex]r=\sqrt{2}[/tex]

Thus, the equation of the circle becomes

[tex](x-6)^{2}+(y-3)^{2}=(\sqrt{2} )^2[/tex]

[tex](x-6)^{2}+(y-3)^{2}=2[/tex]

Therefore, the equation of the circle is [tex](x-6)^{2}+(y-3)^{2}=2[/tex]