Answer:
The number A(t) of grams of salt in the tank at time t is [tex]A(t) = 150 - 110 e^{-\frac{t}{50} }[/tex]
Explanation:
Knowing
[tex]\frac{dA}{dt} = Rin - Rout[/tex]
First we have to find the Rin and Rout
Rin = (concentration of the salt inflow) * (input rate of brine)
Rin = 1 g/L * 3 L/min = 3 g/L
Rout = (concentration of the salt outflow) * (output rate of brine)
Rout = ([tex]\frac{A(t)}{150} g/L[/tex]) * (3 L/min) = [tex]\frac{A(t)}{50} g/min[/tex]
Substituting this results
[tex]\frac{dA}{dt}[/tex] = 3 - [tex]\frac{A(t)}{50}[/tex] --> [tex]\frac{dA}{dt} + \frac{1}{50} A(t) = 4[/tex]
Thus, integration factors is
[tex]e^{ \int\limits^._. {\frac{1}{50} } \, dt } = e^{\frac{t}{50} }[/tex]
[tex]e^{\frac{t}{50} } \frac{dA}{dt} + \frac{1}{50} e^{\frac{t}{50}[/tex] A(t) = 4 [tex]e^{\frac{t}{50} }[/tex]
[tex]e^{\frac{t}{50} } A(t) = \int\limits^._. {3 e^{\frac{t}{50} } } \, dt\\ \\A(t) = 150 + c e^{-\frac{t}{50} }[/tex]
Applying the initial conditions
A(0) = 40
c = 150 - 40 = 110
Now, substitute this result in the solution to get
[tex]A(t) = 150 - 110 e^{-\frac{t}{50} }[/tex]