Answer:
The Young's modulus for this alloy of aluminum is [tex]6.21\times10^{10}\ N/m^2[/tex]
Explanation:
Given that,
Diameter = 0.12 cm
Length = 2.4 m
Mass = 37 kg
Stretch length = 1.24 cm
Density = 2.7 g/cm³
We need to calculate the area
Using formula of area
[tex]A=\pi\times r^2[/tex]
Put the value into the formula
[tex]A=\pi\times(\dfrac{0.12\times10^{-2}}{2})^2[/tex]
[tex]A=0.000001130\ m^2[/tex]
[tex]A=1.13\times10^{-6}\ m^2[/tex]
We need to calculate the Young's modulus
Using formula of Young's modulus
[tex]Y=\dfrac{\dfrac{F}{A}}{\dfrac{\Delta l}{l}}[/tex]
[tex]Y=\dfrac{Fl}{A\Delta l}[/tex]
Put the value into the formula
[tex]Y=\dfrac{37\times9.8\times2.4}{1.13\times10^{-6}\times1.24\times10^{-2}}[/tex]
[tex]Y=6.21\times10^{10}\ N/m^2[/tex]
Hence, The Young's modulus for this alloy of aluminum is [tex]6.21\times10^{10}\ N/m^2[/tex]