The value of [tex]\frac{dy}{dt}[/tex] is [tex]396[/tex]
Explanation:
It is given that [tex]x=x(t)[/tex] and [tex]y=y(t)[/tex]
Also, given that [tex]y=x^3+1[/tex] and [tex]\frac{dx}{dt} =33[/tex] when [tex]x=22[/tex]
Now, we need to determine the value of [tex]\frac{dy}{dt}[/tex] when [tex]x=2[/tex]
To determine the value of [tex]\frac{dy}{dt}[/tex] when [tex]x=2[/tex], we need to differentiate the function [tex]y=x^3+1[/tex] with respect to [tex]\frac{dy}{dt}[/tex]
Thus, we have,
[tex]\frac{dy}{dt}=3x^2(\frac{dx}{dt} )+0[/tex]
Simplifying, we get,
[tex]\frac{dy}{dt}=3x^2(\frac{dx}{dt} )[/tex]
Substituting [tex]x=2[/tex] and [tex]\frac{dx}{dt} =33[/tex] , we get,
[tex]\frac{dy}{dt}=3(2)^2(33 )[/tex]
Squaring the term, we have,
[tex]\frac{dy}{dt}=3(4)(33 )[/tex]
Multiplying the terms, we get,
[tex]\frac{dy}{dt}=396[/tex]
Thus, the value of [tex]\frac{dy}{dt}[/tex] is [tex]396[/tex]