Respuesta :

Answer:

[tex]-5x-6y=10[/tex]      ←   in standard form

Step-by-step explanation:

The equation of a line in  standard form  is.

[tex]Ax+By=C[/tex]

were

  • A is a positive integer and
  • B, C are integers

As the equation in  point-slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

where m is the slope and [tex]\left(x_1,\:y_1\right)[/tex]  is a point on the line.  

as

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-2,\:0\right),\:\left(x_2,\:y_2\right)=\left(-8,\:5\right)[/tex]

[tex]m=\frac{5-0}{-8-\left(-2\right)}[/tex]

[tex]m=-\frac{5}{6}[/tex]

using   [tex]m=-\frac{5}{6}[/tex]  and [tex]\left(x_1,\:y_1\right)=\left(-2,\:0\right)[/tex]  then

[tex]y-0=-\frac{5}{6}\left(x-\left(-2\right)\right)[/tex]

[tex]-\frac{5}{6}\left(x-\left(-2\right)\right)=y-0[/tex]

[tex]6\left(-\frac{5}{6}\left(x-\left(-2\right)\right)\right)=6y[/tex]

[tex]-5\left(x+2\right)=6y[/tex]

[tex]-5x-10=6y[/tex]

[tex]-5x-6y=10[/tex]      ←   in standard form