Answer:
a) 22.94 psi
b) [tex]5.93\times10^{-5}[/tex]
Step-by-step explanation:
a)The pressure at which will trigger a warning is
31 - 31*0.26 = 22.94 psi
b) The probability that that the TPMS will trigger warning at 22.94 psi, given that tire pressure has a normal distribution with average of 31 psi and standard deviation of 2 psi
[tex]f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^{2}}[/tex]
where x = 22.94, [tex]\mu = 31, \sigma = 2[/tex]
[tex]f(22.94)={\frac {1}{2 {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {22.94-31}{2 }}\right)^{2}}[/tex]
[tex]f(22.94)=0.2e^{-8.12} = 5.93\times10^{-5}[/tex]