Line AB passes through points A(−6, 6) and B(12, 3). If the equation of the line is written in slope-intercept form, y=mx+b, then m=m equals negative StartFraction 1 Over 6 EndFraction.. What is the value of b?

Respuesta :

Answer:

  • [tex]m=-\frac{1}{6}[/tex]
  • [tex]b=5[/tex]

Step-by-step explanation:

[tex]\mathrm{Slope\:between\:two\:points}:\quad \mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}[/tex]

[tex]\left(x_1,\:y_1\right)=\left(-6,\:6\right),\:\left(x_2,\:y_2\right)=\left(12,\:3\right)[/tex]

[tex]m=\frac{3-6}{12-\left(-6\right)}[/tex]

[tex]m=-\frac{1}{6}[/tex]

As the equation in  point-slope form

[tex]y-y_1=m\left(x-x_1\right)[/tex]

Here:

  • m is the slope and
  • [tex]\left(x_1,\:y_1\right)[/tex]  is a point on the line

using [tex]m=-\frac{1}{6}[/tex]  and [tex]\left(x_1,\:y_1\right)=\left(-6,\:6\right)[/tex] then

[tex]y-6=-\frac{1}{6}\left(x-\left(-6\right)\right)[/tex]

[tex]-\frac{1}{6}\left(x-\left(-6\right)\right)=y-6[/tex]

[tex]\mathrm{Multiply\:both\:sides\:by\:}-6[/tex]

[tex]\left(-\frac{1}{6}\left(x-\left(-6\right)\right)\right)\left(-6\right)=y\left(-6\right)-6\left(-6\right)[/tex]

[tex]x+6=-6y+36[/tex]

[tex]x+6-36=-6y[/tex]

[tex]x-30=-6y[/tex]

[tex]\frac{x-30}{-6}=\frac{-6y}{-6}\:[/tex]

[tex]y=\frac{-1}{6}x+5[/tex]

Thus

[tex]y=\frac{-1}{6}x+5[/tex]

comparing the equation with the slope-intercept form

[tex]y=mx+b[/tex]

so,

[tex]y=mx+b[/tex]

[tex]y=\frac{-1}{6}x+5[/tex]

Therefore,

  • [tex]m=-\frac{1}{6}[/tex]
  • [tex]b=5[/tex]

A general line equation is something of the form:

y = m*x + b

Where m is the slope and b is the y-intercept.

We will find that the value of b is 5.

If we know that the line passes through the points (x₁, y₁) and (x₂, y₂) the slope can be written as:

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Here we do know that the line passes through (-6, 6) and (12, 3).

Then the slope is just:

[tex]m = \frac{3 - 6}{12 - (-6)} = -\frac{1}{6}[/tex]

Then the linear equation is something like:

[tex]y = -\frac{1}{6}*x + b[/tex]

Now, knowing that the function passes through the point (-6, 6), we can replace these values in the above equation to get:

[tex]6 = -\frac{1}{6}*-6 + b\\\\6 = 1 + b\\\\6 - 1 = b = 5[/tex]

Then the linear equation is:

[tex]y = -\frac{1}{6}*x + 5[/tex]

If you want to learn more, you can read:

https://brainly.com/question/13738061