Answer:
The degree of dissociation of acetic acid is 0.08448.
The pH of the solution is 3.72.
Explanation:
The [tex]pK_a=4.756[/tex]
The value of the dissociation constant = [tex]K_a[/tex]
[tex]pK_a=-\log[K_a][/tex]
[tex]K_a=10^{-4.756}=1.754\times 10^{-5}[/tex]
Initial concentration of the acetic acid = [HAc] =c = 0.00225
Degree of dissociation = α
[tex]HAc\rightleftharpoons H^++Ac^-[/tex]
Initially
c
At equilibrium ;
(c-cα) cα cα
The expression of dissociation constant is given as:
[tex]K_a=\frac{[H^+][Ac^-]}{[HAc]}[/tex]
[tex]1.754\times 10^{-5}=\frac{c\times \alpha \times c\times \alpha}{(c-c\alpha)}[/tex]
[tex]1.754\times 10^{-5}=\frac{c\alpha ^2}{(1-\alpha)}[/tex]
[tex]1.754\times 10^{-5}=\frac{0.00225 \alpha ^2}{(1-\alpha)}[/tex]
Solving for α:
α = 0.08448
The degree of dissociation of acetic acid is 0.08448.
[tex][H^+]=c\alpha = 0.00225M\times 0.08448=0.0001901 M[/tex]
The pH of the solution ;
[tex]pH=-\log[H^+][/tex]
[tex]=-\log[0.0001901 M]=3.72[/tex]