Respuesta :
3r(2p - 5) - p(2p - 5)
The common factor is (2p - 5), therefore we can write:
(2p - 5)(3r - p)
The common factor is (2p - 5), therefore we can write:
(2p - 5)(3r - p)
3r(2p - 5) - p(2p - 5)
let a = 2p - 5
3r(2p - 5) - p(2p - 5) = 3ra - pa = a(3r - p)
let's substitute back the value of a.
a(3r - p) = (2p - 5)(3r - p)
Therefore: 3r(2p - 5) - p(2p - 5) = (2p - 5)(3r - p)
let a = 2p - 5
3r(2p - 5) - p(2p - 5) = 3ra - pa = a(3r - p)
let's substitute back the value of a.
a(3r - p) = (2p - 5)(3r - p)
Therefore: 3r(2p - 5) - p(2p - 5) = (2p - 5)(3r - p)