Respuesta :
Answer : The amount of heat required is, [tex]3.09\times 10^4J[/tex]
Solution :
The process involved in this problem are :
[tex](1):H_2O(s)(-20^oC)\rightarrow H_2O(s)(0^oC)\\\\(2):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(3):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(4):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)\\\\(5):H_2O(g)(100^oC)\rightarrow H_2O(g)(120^oC)[/tex]
The expression used will be:
[tex]\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+m\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]+m\times \Delta H_{vap}+[m\times c_{p,g}\times (T_{final}-T_{initial})][/tex]
where,
[tex]\Delta H[/tex] = heat required for the reaction
m = mass of ice = 10.0 g
[tex]c_{p,s}[/tex] = specific heat of solid water or ice = [tex]2.09J/g^oC[/tex]
[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]4.18J/g^oC[/tex]
[tex]c_{p,g}[/tex] = specific heat of gaseous water = [tex]2.03J/g^oC[/tex]
[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = [tex]333J/g[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = [tex]2260J/g[/tex]
Now put all the given values in the above expression, we get:
[tex]\Delta H=[10.0g\times 2.09J/g^oC\times (0-(-20))^oC]+10.0g\times 333J/g+[10.0g\times 4.18J/g^oC\times (100-0)^oC]+10.0g\times 2260J/g+[10.0g\times 2.03J/g^oC\times (120-100)^oC][/tex]
[tex]\Delta H=30934J=3.09\times 10^4J[/tex]
Therefore, the amount of heat required is, [tex]3.09\times 10^4J[/tex]