Respuesta :

Answer:

Option 3:

elimination using multiplication (3,-1)

Step-by-step explanation:

The system of equations to be solved are

-5x+3y=-18.......eqn (1)

2x+2y=4. .......eqn (2)

We first multiply eqn(1) by 2 and eqn(2) by 5 to get eqn(3) and eqn(4) respectively.

This implies

-10x+6y=-36.......eqn (3)

10x+10y= 20.......eqn (4)

we then add eqn(3) and eqn(4) to obtain

16y=-16

We divide through by 16

[tex] \implies \frac{16y}{16}= \frac{16}{16} [/tex]

[tex]\implies y = - 1[/tex]

Putting the value of y into eqn(2)

[tex] \implies 2x + 2( -1 ) = 4[/tex]

[tex]\implies 2x - 2= 4[/tex]

Adding 2to both sides

[tex]\implies 2x - 2+ 2 = 4 + 2[/tex]

[tex]\implies 2x= 6[/tex]

Dividing through by 2

[tex]\implies \frac{2x}{2} = \frac{6}{2} [/tex]

[tex]\implies x = 3[/tex]

Hence, (x, y)=(3,-1)