Solution:
a. Find quantity demanded when P = $1.00 and [tex]P_{s}[/tex]= $2.00
Q = 10 - 2(1) + 2 = 10
Price elasticity of demand = [tex]\frac{p}{q}[/tex] ΔQ / ΔP = [tex]\frac{1}{10}[/tex] (-2) = [tex]-\frac{2}{10}[/tex] = -0.2
Cross-price elasticity of demand = [tex]\frac{P_{s} }{q}[/tex] ΔQ / Δ[tex]P_{s}[/tex] = [tex]\frac{2}{10}[/tex] (1) = 0.2
b. When P = $2.00
Q = 10 - 2(2) + 2 = 8
Price elasticity of demand = [tex]\frac{p}{q}[/tex] ΔQ / ΔP = [tex]\frac{2}{8}[/tex] (-2) = [tex]-\frac{4}{8}[/tex] = -0.5
Cross-price elasticity of demand = [tex]\frac{P_{s} }{q}[/tex] ΔQ / Δ[tex]P_{s}[/tex] = [tex]\frac{2}{8}[/tex] = 0.25