Respuesta :
Answer:
Part 3)
a) [tex]x=0[/tex]
b) [tex]x=0[/tex] and [tex]x=\frac{3}{4}[/tex]
c) [tex]x=-3[/tex] and [tex]x=-2[/tex]
d) [tex]n=1[/tex] and [tex]n=4[/tex]
e) [tex]x=-1[/tex] and [tex]x=\frac{2}{3}[/tex]
f) [tex]x=-1[/tex] and [tex]x=\frac{1}{2}[/tex]
Part 4)[tex]x=10\ cm[/tex]
Step-by-step explanation:
Part 3) Solve the following quadratic equations.
case a) we have
[tex]4x^2=0[/tex]
Divide by 4 both sides
[tex]x^2=0[/tex]
take square root both sides
[tex]x=0[/tex]
case b) we have
[tex]4x^2-3x=0[/tex]
Factor x
[tex]x(4x-3)=0[/tex]
so
One solution is
[tex]x=0[/tex]
Second solution is
[tex](4x-3)=0[/tex]
[tex]x=\frac{3}{4}[/tex]
case c) we have
[tex]x^2+5x+6=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^2+5x+6=0[/tex]
so
[tex]a=1\\b=5\\c=6[/tex]
substitute in the formula
[tex]x=\frac{-5\pm\sqrt{5^{2}-4(1)(6)}} {2(1)}[/tex]
[tex]x=\frac{-5\pm\sqrt{1}} {2}[/tex]
[tex]x=\frac{-5\pm1} {2}[/tex]
therefore
[tex]x=\frac{-5+1} {2}=-2[/tex]
[tex]x=\frac{-5-1} {2}=-3[/tex]
case d) we have
[tex]n^2-5n+4=0[/tex]
The formula to solve a quadratic equation of the form
[tex]an^{2} +bn+c=0[/tex]
is equal to
[tex]n=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]n^2-5n+4=0[/tex]
so
[tex]a=1\\b=-5\\c=4[/tex]
substitute in the formula
[tex]n=\frac{-(-5)\pm\sqrt{-5^{2}-4(1)(4)}} {2(1)}[/tex]
[tex]n=\frac{5\pm\sqrt{9}} {2}[/tex]
[tex]n=\frac{5\pm3} {2}[/tex]
therefore
[tex]n=\frac{5+3} {2}=4[/tex]
[tex]n=\frac{5-3} {2}=1[/tex]
case e) we have
[tex]3x^2+x-2=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]3x^2+x-2=0[/tex]
so
[tex]a=3\\b=1\\c=-2[/tex]
substitute in the formula
[tex]x=\frac{-1\pm\sqrt{1^{2}-4(3)(-2)}} {2(3)}[/tex]
[tex]x=\frac{-1\pm\sqrt{25}} {6}[/tex]
[tex]x=\frac{-1\pm5} {6}[/tex]
therefore
[tex]x=\frac{-1+5} {6}=\frac{2}{3}[/tex]
[tex]x=\frac{-1-5} {6}=-1[/tex]
case f) we have
[tex]6x^2+3x-3=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]6x^2+3x-3=0[/tex]
so
[tex]a=6\\b=3\\c=-3[/tex]
substitute in the formula
[tex]x=\frac{-3\pm\sqrt{3^{2}-4(6)(-3)}} {2(6)}[/tex]
[tex]x=\frac{-3\pm\sqrt{81}} {12}[/tex]
[tex]x=\frac{-3\pm9} {12}[/tex]
therefore
[tex]x=\frac{-3+9}{12}=\frac{1}{2}[/tex]
[tex]x=\frac{-3-9}{12}=-1[/tex]
Part 4) we know that
The area of rectangle is equal to
[tex]A=LW[/tex]
we have
[tex]A=66\ cm^2\\L=(x+1)\ cm\\W=(x-4)\ cm[/tex]
substitute
[tex]66=(x+1)(x-4)[/tex]
solve for x
Apply distributive property right side
[tex]66=x^2-4x+x-4\\x^2-3x-70=0[/tex]
solve the quadratic equation by formula
we have
[tex]a=1\\b=-3\\c=-70[/tex]
substitute in the formula
[tex]x=\frac{-(-3)\pm\sqrt{-3^{2}-4(1)(-70)}} {2(1)}[/tex]
[tex]x=\frac{3\pm\sqrt{289}} {2}[/tex]
[tex]x=\frac{3\pm17} {2}[/tex]
therefore
[tex]x=\frac{3+17} {2}=10[/tex]
[tex]x=\frac{3-17} {2}=-7[/tex] ----> the value of x cannot be negative
so
The solution is x=10 cm
[tex]L=(10+1)=11\ cm\\W=10-4=6\ cm[/tex]