IT IS URGENT !!! PLEASE HELP, IT'S FOR TODAY !!!

3. Solve the following quadratic equations.

4x2 = 0
4x2-3x = 0
x2 + 5x + 6 = 0
n2-5n + 4 = 0
3x2 + x-2 = 0
6x2 + 3x-3 = 0

4. Given the following rectangle, determining obligations should be the value of x that allows to obtain the area indicated.

IT IS URGENT PLEASE HELP ITS FOR TODAY 3 Solve the following quadratic equations 4x2 0 4x23x 0 x2 5x 6 0 n25n 4 0 3x2 x2 0 6x2 3x3 0 4 Given the following recta class=

Respuesta :

Answer:

Part 3)

a) [tex]x=0[/tex]

b) [tex]x=0[/tex] and [tex]x=\frac{3}{4}[/tex]

c) [tex]x=-3[/tex] and [tex]x=-2[/tex]

d) [tex]n=1[/tex] and [tex]n=4[/tex]

e) [tex]x=-1[/tex]  and [tex]x=\frac{2}{3}[/tex]

f) [tex]x=-1[/tex]  and [tex]x=\frac{1}{2}[/tex]

Part  4)[tex]x=10\ cm[/tex]

Step-by-step explanation:

Part 3) Solve the following quadratic equations.

case a) we have

[tex]4x^2=0[/tex]

Divide by 4 both sides

[tex]x^2=0[/tex]

take square root both sides

[tex]x=0[/tex]

case b) we have

[tex]4x^2-3x=0[/tex]

Factor x

[tex]x(4x-3)=0[/tex]

so

One solution is

[tex]x=0[/tex]

Second solution is

[tex](4x-3)=0[/tex]

[tex]x=\frac{3}{4}[/tex]

case c) we have

[tex]x^2+5x+6=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]x^2+5x+6=0[/tex]

so

[tex]a=1\\b=5\\c=6[/tex]

substitute in the formula

[tex]x=\frac{-5\pm\sqrt{5^{2}-4(1)(6)}} {2(1)}[/tex]

[tex]x=\frac{-5\pm\sqrt{1}} {2}[/tex]

[tex]x=\frac{-5\pm1} {2}[/tex]

therefore

[tex]x=\frac{-5+1} {2}=-2[/tex]

[tex]x=\frac{-5-1} {2}=-3[/tex]

case d) we have

[tex]n^2-5n+4=0[/tex]

The formula to solve a quadratic equation of the form

[tex]an^{2} +bn+c=0[/tex]

is equal to

[tex]n=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]n^2-5n+4=0[/tex]

so

[tex]a=1\\b=-5\\c=4[/tex]

substitute in the formula

[tex]n=\frac{-(-5)\pm\sqrt{-5^{2}-4(1)(4)}} {2(1)}[/tex]

[tex]n=\frac{5\pm\sqrt{9}} {2}[/tex]

[tex]n=\frac{5\pm3} {2}[/tex]

therefore

[tex]n=\frac{5+3} {2}=4[/tex]

[tex]n=\frac{5-3} {2}=1[/tex]

case e) we have

[tex]3x^2+x-2=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]3x^2+x-2=0[/tex]

so

[tex]a=3\\b=1\\c=-2[/tex]

substitute in the formula

[tex]x=\frac{-1\pm\sqrt{1^{2}-4(3)(-2)}} {2(3)}[/tex]

[tex]x=\frac{-1\pm\sqrt{25}} {6}[/tex]

[tex]x=\frac{-1\pm5} {6}[/tex]

therefore

[tex]x=\frac{-1+5} {6}=\frac{2}{3}[/tex]

[tex]x=\frac{-1-5} {6}=-1[/tex]

case f) we have

[tex]6x^2+3x-3=0[/tex]

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]6x^2+3x-3=0[/tex]

so

[tex]a=6\\b=3\\c=-3[/tex]

substitute in the formula

[tex]x=\frac{-3\pm\sqrt{3^{2}-4(6)(-3)}} {2(6)}[/tex]

[tex]x=\frac{-3\pm\sqrt{81}} {12}[/tex]

[tex]x=\frac{-3\pm9} {12}[/tex]

therefore

[tex]x=\frac{-3+9}{12}=\frac{1}{2}[/tex]

[tex]x=\frac{-3-9}{12}=-1[/tex]

Part 4) we know that

The area of rectangle is equal to

[tex]A=LW[/tex]

we have

[tex]A=66\ cm^2\\L=(x+1)\ cm\\W=(x-4)\ cm[/tex]

substitute

[tex]66=(x+1)(x-4)[/tex]

solve for x

Apply distributive property right side

[tex]66=x^2-4x+x-4\\x^2-3x-70=0[/tex]

solve the quadratic equation by formula

we have

[tex]a=1\\b=-3\\c=-70[/tex]

substitute in the formula

[tex]x=\frac{-(-3)\pm\sqrt{-3^{2}-4(1)(-70)}} {2(1)}[/tex]

[tex]x=\frac{3\pm\sqrt{289}} {2}[/tex]

[tex]x=\frac{3\pm17} {2}[/tex]

therefore

[tex]x=\frac{3+17} {2}=10[/tex]

[tex]x=\frac{3-17} {2}=-7[/tex]  ----> the value of x cannot be negative

so

The solution is x=10 cm

[tex]L=(10+1)=11\ cm\\W=10-4=6\ cm[/tex]