Answer:
The angle of B ≈ π / 3 + √1.5 ( π / 180) radians.
Step-by-step explanation:
As the law of sines state that
[tex]b *sin A = a* sin B[/tex]
So by taking derivative of both sides we get,
[tex]b*cos A = a*cos B* [ \frac{dB }{dA} ][/tex]
thus
[tex]\frac{dB }{dA} = \frac{b*cos A }{a*cos B}[/tex]
at
[tex]A=[/tex] π / 4 & [tex]B=[/tex] π / 3 (using radian values for A and B)
we find
[tex]\frac{dB}{dA} = \sqrt{1.5}[/tex]
So,
B ≈ π / 3 + √1.5 ( π / 180)