Respuesta :

Question:

Find the value of x and the value of y.

A.

x = 15, y = 10

B.

x = 20, y = 50

C.

x = 50, y = 10

D.

x = 50, y = 20

The image of the degrees of angles is attached below:

Answer:

Option C: [tex]x=50, y=10[/tex] is the value of x and y

Explanation:

Since, we know that the vertically opposite angles are equal.

From the figure, the angles [tex]3y[/tex] and [tex]x-20[/tex] are equal.

       [tex]3y=x-20[/tex]

[tex]3y+20=x[/tex] -----------(1)

And the angles [tex]y+140[/tex] and [tex]5x-100[/tex] are equal.

[tex]y+140=5x-100[/tex]

        [tex]y=5x-240[/tex]  -----------(2)

Substituting [tex]x=3y+20[/tex] in the equation [tex]y=5x-240[/tex] , we get,

     [tex]y=5(3y+20)-240[/tex]

     [tex]y=15y+100-240[/tex]

     [tex]y=15y-140[/tex]

[tex]-14y=-140[/tex]

     [tex]y=10[/tex]

Thus, the value of y is [tex]y=10[/tex]

Substituting [tex]y=10[/tex] in the equation [tex]3y+20=x[/tex] , we have,

[tex]3(10)+20=x[/tex]

   [tex]30+20=x[/tex]

           [tex]50=x[/tex]

Thus, the value of x is [tex]x=50[/tex]

Therefore, the value of x and y are [tex]x=50[/tex] and [tex]y=10[/tex]

Hence, Option C is the correct answer.

Ver imagen vijayalalitha