Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the ratio equality for circles

[tex]\frac{arc}{C}[/tex] = [tex]\frac{angleatcentre}{360}[/tex]

(a)

Note the angle at the centre of the shaded arc is 360° - 90° = 270°, thus

[tex]\frac{45}{C}[/tex] = [tex]\frac{270}{360}[/tex] = [tex]\frac{3}{4}[/tex] ( cross- multiply )

3C = 180 ( divide both sides by 3 )

C = 60 mm

(b)

Note the angle at the centre of the shaded arc is 360° - 135° = 225°, thus

[tex]\frac{3.3}{C}[/tex] = [tex]\frac{225}{360}[/tex] ( cross- multiply )

225C = 1188 ( divide both sides by 225 )

C = 5.28 cm