Respuesta :
Answer:
A.) x + 2y = 2
Step-by-step explanation:
The equation of line in two point form is given as:
[tex] \frac{y - 4}{4 - 0} = \frac{x - ( - 6)}{ - 6 - 2} \\ \\ \therefore \frac{y - 4}{4} = \frac{x + 6}{ -8} \\ \\ \therefore \frac{y - 4}{1} = \frac{x + 6}{ -2} \\ \\ \therefore \: - 2(y - 4) = x + 6 \\ \\ - 2y + 8 = x + 6 \\ \\ \therefore \: x + 2y + 6 - 8 = 0 \\ \\ \therefore \: x + 2y - 2 = 0 \\ \\ \huge \red { \boxed{ \therefore \: x + 2y = 2}} \\ is \: the \: required \: equation \: of \: line. \\ [/tex]
Thus, option A is the correct answer.