Respuesta :
Part 1: The solution of the new equation is [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] and the two solutions satisfies the new equation.
Part 2: The solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation but not the original equation.
Explanation:
Part 1: The given equation is [tex]x+1=2 x[/tex]
We need to square both sides of the equation and verify that the solution satisfies the new equation.
Now, squaring both sides of the equation, we get,
[tex](x+1)^2=(2 x)^2[/tex]
Thus, the new equation is [tex](x+1)^2=(2 x)^2[/tex]
Let us solve the new equation to determine the solution.
[tex]x^{2} +2x+1=4x^{2}[/tex]
[tex]4x^{2}-x^{2} -2x-1=0[/tex]
[tex]3x^{2} -2x-1=0[/tex]
Taking factors, we get,
[tex]3x(x-1)+1(x-1)=0[/tex]
[tex](3x+1)(x-1)=0[/tex]
[tex]x=-\frac{1}{3} ,1[/tex]
Thus, the solution of the new equation is [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex]
Now, we shall verify the solution [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] that satisfies the new equation [tex](x+1)^2=(2 x)^2[/tex]
Substituting [tex]x=1[/tex] in [tex](x+1)^2=(2 x)^2[/tex], we get,
[tex](1+1)^2=(2 (1))^2[/tex]
[tex](2)^2=(2)^2[/tex]
[tex]4=4[/tex]
Since, both sides of the equation are equal, the solution [tex]x=1[/tex] satisfies the new equation.
Also, substituting [tex]x=-\frac{1}{3}[/tex] in [tex](x+1)^2=(2 x)^2[/tex], we get,
[tex](-\frac{1}{3} +1)^2=(2 (-\frac{1}{3} ))^2[/tex]
[tex](\frac{2}{3} )^2=(-\frac{2}{3} )^2[/tex]
[tex]\frac{4}{9} =\frac{4}{9}[/tex]
Since, both sides of the equation are equal, the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.
Thus, the solutions [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.
Part 2: Now, we need to show that the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation but not the original equation.
Substituting [tex]x=-\frac{1}{3}[/tex] in the new equation, we get,
[tex](x+1)^2=(2 x)^2[/tex]
[tex](-\frac{1}{3} +1)^2=(2 (-\frac{1}{3} ))^2[/tex]
[tex](\frac{2}{3} )^2=(-\frac{2}{3} )^2[/tex]
[tex]\frac{4}{9} =\frac{4}{9}[/tex]
Since, both sides of the equation are equal, the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.
Now, substituting [tex]x=-\frac{1}{3}[/tex] in the original equation, we have,
[tex]x+1=2 x[/tex]
[tex]-\frac{1}{3} +1=2 (-\frac{1}{3} )[/tex]
[tex]\frac{2}{3} =-\frac{2}{3}[/tex]
Since, both sides of the equation are not equal, the solution [tex]x=-\frac{1}{3}[/tex] does not satisfies the original equation.