so1963
contestada

When you solve the equation x + 1 = 2x for x, the solution is 1. 1) Square both sides of the equation, and verify that your solution satisfies the new equation. 2) Show that −1/3 satisfies the new equation but not the original equation.

Respuesta :

Part 1: The solution of the new equation is [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] and the two solutions satisfies the new equation.

Part 2: The solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation but not the original equation.

Explanation:

Part 1: The given equation is [tex]x+1=2 x[/tex]

We need to square both sides of the equation and verify that the solution satisfies the new equation.

Now, squaring both sides of the equation, we get,

[tex](x+1)^2=(2 x)^2[/tex]

Thus, the new equation is [tex](x+1)^2=(2 x)^2[/tex]

Let us solve the new equation to determine the solution.

         [tex]x^{2} +2x+1=4x^{2}[/tex]

[tex]4x^{2}-x^{2} -2x-1=0[/tex]

       [tex]3x^{2} -2x-1=0[/tex]

Taking factors, we get,

[tex]3x(x-1)+1(x-1)=0[/tex]

       [tex](3x+1)(x-1)=0[/tex]

                             [tex]x=-\frac{1}{3} ,1[/tex]

Thus, the solution of the new equation is [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex]

Now, we shall verify the solution [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] that satisfies the new equation [tex](x+1)^2=(2 x)^2[/tex]

Substituting [tex]x=1[/tex] in [tex](x+1)^2=(2 x)^2[/tex], we get,

[tex](1+1)^2=(2 (1))^2[/tex]

     [tex](2)^2=(2)^2[/tex]

         [tex]4=4[/tex]

Since, both sides of the equation are equal, the solution [tex]x=1[/tex] satisfies the new equation.

Also, substituting [tex]x=-\frac{1}{3}[/tex] in [tex](x+1)^2=(2 x)^2[/tex], we get,

[tex](-\frac{1}{3} +1)^2=(2 (-\frac{1}{3} ))^2[/tex]

        [tex](\frac{2}{3} )^2=(-\frac{2}{3} )^2[/tex]

             [tex]\frac{4}{9} =\frac{4}{9}[/tex]

Since, both sides of the equation are equal, the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.

Thus, the solutions [tex]x=1[/tex] and [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.

Part 2: Now, we need to show that the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation but not the original equation.

Substituting [tex]x=-\frac{1}{3}[/tex] in the new equation, we get,

  [tex](x+1)^2=(2 x)^2[/tex]

[tex](-\frac{1}{3} +1)^2=(2 (-\frac{1}{3} ))^2[/tex]

        [tex](\frac{2}{3} )^2=(-\frac{2}{3} )^2[/tex]

             [tex]\frac{4}{9} =\frac{4}{9}[/tex]

Since, both sides of the equation are equal, the solution [tex]x=-\frac{1}{3}[/tex] satisfies the new equation.

Now, substituting [tex]x=-\frac{1}{3}[/tex] in the original equation, we have,

  [tex]x+1=2 x[/tex]

[tex]-\frac{1}{3} +1=2 (-\frac{1}{3} )[/tex]

        [tex]\frac{2}{3} =-\frac{2}{3}[/tex]

Since, both sides of the equation are not equal, the solution [tex]x=-\frac{1}{3}[/tex] does not satisfies the original equation.