Respuesta :

Answer:

The answer is y = ± [tex]\sqrt[4]{\frac{x}{4}}[/tex] ,  [tex]f^{-1}(x)[/tex] is a function1st answer

Step-by-step explanation:

Let us revise the steps of find the inverse of a function

  1. Replace f(x) with y
  2. Replace every x by y and replace y by x
  3. Solve the equation in Step 2 for y
  4. Replace y by [tex]f^{-1}(x)[/tex]

∵ [tex]f(x)=4x^{4}[/tex]

- Replace f(x) by y

∴ [tex]y=4x^{4}[/tex]

- Replace y by x and x by y

∴ [tex]x=4y^{4}[/tex]

- Divide each side by 4

∴ [tex]\frac{x}{4}=y^{4}[/tex]

- Take [tex]\sqrt[4]{}[/tex]  for both sides

∴ ± [tex]\sqrt[4]{\frac{x}{4}}=y[/tex]

- Switch the two sides

∴ y = ± [tex]\sqrt[4]{\frac{x}{4}}[/tex]

∵ There is no fourth root for negative number

∴ x ≥ 0

When you test the graph of [tex]f^{-1}(x)[/tex] by a vertical line, it will cut it just at one in every position, so it is a function. Look to the attached graph for more understand

∴  [tex]f^{-1}(x)[/tex] is a function

The answer is y = ± [tex]\sqrt[4]{\frac{x}{4}}[/tex] ,  [tex]f^{-1}(x)[/tex] is a function

Ver imagen Ashraf82