Respuesta :

Answer:

15/13

Step-by-step explanation:

Ver imagen msgondal0

Answer:

[tex]\[\frac{171}{13}\][/tex]

Step-by-step explanation:

Given functions f(x) and g(x) are:

[tex]f(x)=\[x^{2}-3\][/tex]

[tex]g(x)=\[x+\frac{2}{x}\][/tex]

Then, (g o f)(x)=g(f(x))=g([tex]\[x^{2}-3\][/tex])

[tex]=\[x^{2}-3+\frac{2}{x^{2}-3}\][/tex]

[tex]=\[x^{2}-3+\frac{2}{x^{2}-3}\][/tex]

Evaluating the value of (g o f)(x) when x=4,

[tex]=\[4^{2}-3+\frac{2}{4^{2}-3}\][/tex]

[tex]=\[16-3+\frac{2}{16-3}\][/tex]

[tex]=\[13+\frac{2}{13}\][/tex]

[tex]=\[\frac{171}{13}\][/tex]