Respuesta :

The missing coordinates of the parallelogram is (m + h, n).

Solution:

Diagonals of the parallelogram bisect each other.

Solve using mid-point formula:

[tex]$\text{Midpoint} =\left( \frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right )[/tex]

Here [tex]x_1=m, y_1=n, x_2=h, y_2=0[/tex]

              [tex]$=\left( \frac{m+h}{2}, \frac{n+0}{2}\right )[/tex]

[tex]$\text{Midpoint} =\left( \frac{m+h}{2}, \frac{n}{2}\right )[/tex]

To find the missing coordinate:

Let the missing coordinates by x and y.

Here [tex]x_1=0, y_1=0, x_2=x, y_2=y[/tex]

[tex]$\text{Midpoint}=\left( \frac{0+x}{2}, \frac{0+y}{2}\right )[/tex]

[tex]$\left( \frac{m+h}{2}, \frac{n}{2}\right )=\left( \frac{0+x}{2}, \frac{0+y}{2}\right )[/tex]

[tex]$\left( \frac{m+h}{2}, \frac{n}{2}\right )=\left( \frac{x}{2}, \frac{y}{2}\right )[/tex]

Now equate the x-coordinate.

[tex]$ \frac{m+h}{2}=\frac{x}{2}[/tex]

Multiply by 2 on both sides of the equation, we get

m + h = x

x = m + h

Now equate the y-coordinate.

[tex]$\frac{n}{2} = \frac{y}{2}[/tex]

Multiply by 2 on both sides of the equation, we get

n = y

y = n

Hence the missing coordinates of the parallelogram is (m + h, n).