Respuesta :

Answer:

The equation of the graph g(x) is g(x) =  [tex]\frac{1}{3}[/tex]A

Step-by-step explanation:

∵ f(x) = x²

∵ Point (3 , 3) lies on g(x)

- To find the equation of g(x) substitute x by 3 in each equation

    and find which one will give y = 3

If g(x) = [tex]\frac{1}{3}[/tex] x²

∵ x = 3

∴ g(3) = [tex]\frac{1}{3}[/tex] (3)²

∴ g(3) = [tex]\frac{1}{3}[/tex] (9)

∴ g(3) = 3

∴ g(x) = [tex]\frac{1}{3}[/tex]

Lets check the other answers

If g(x) = [tex]\frac{1}{9}[/tex] x²

∵ x = 3

∴ g(3) = [tex]\frac{1}{9}[/tex] (3)²

∴ g(3) = [tex]\frac{1}{9}[/tex] (9)

∴ g(3) = 1

∴ g(x) ≠ [tex]\frac{1}{9}[/tex] x²

If g(x) = [[tex]\frac{1}{3}[/tex] x]²

∵ x = 3

∴ g(3) = [ [tex]\frac{1}{3}[/tex] (3)]²

∴ g(3) = [ [tex]\frac{1}{9}[/tex] (9)]

∴ g(3) = 1

∴ g(x) ≠  [[tex]\frac{1}{3}[/tex] x]²

If g(x) = 3x²

∵ x = 3

∴ g(3) = 3(3)²

∴ g(3) = 3(9)

∴ g(3) = 27

∴ g(x) ≠ 3x²

The equation of the graph g(x) is g(x) =  [tex]\frac{1}{3}[/tex]