Respuesta :

Answer:

[tex](n+2)^2+6[/tex]

Step-by-step explanation:

The picture of the question in the attached figure

we know that

In the pattern 1 there are

[tex]small\ squares=(3^2+6)=15[/tex]

In the pattern 2 there are

[tex]small\ squares=(4^2+6)=22[/tex]

In the pattern 3 there are

[tex]small\ squares=(5^2+6)=31[/tex]

we can write the expression in the form

[tex](n+a)^2+b[/tex]

where

[tex]a=2\\b=6[/tex]

substitute

[tex](n+2)^2+6[/tex]

Ver imagen calculista

An expression for the number of small squares in pattern n is [tex](n+2)^{2}+6[/tex] .

In the pattern 1:

3 + (3 x 3) + 3 = 15

Number of small squares = 15

In the pattern 2:

3 + (4 x 4) + 3 = 22

Number of small squares = 22

In the pattern 3:

3 + (5 x 5) + 3 =31

Number of small squares = 31

In the pattern n:

[tex]3+(n+2)^{2} +3[/tex]

Simplify:

[tex]=(n+2)^{2}+6[/tex]

Therefore, an expression for the number of small squares in pattern n is [tex](n+2)^{2}+6[/tex] .

For more information:

https://brainly.com/question/8912117