Respuesta :

ΔXYP ≅ ΔZYP by SSS similarity congruence theorem.

Solution:

Given data:

[tex]\overline{XZ} \perp \overline{WY}[/tex] and [tex]\overline{X Y} \cong \overline{Z Y}[/tex]

To prove [tex]\triangle X Y P \cong \triangle Z Y P[/tex]:

In ΔXYP and ΔZYP,

[tex]\overline {XP} \cong \overline {PZ}[/tex] (given side)

[tex]\overline{X Y} \cong \overline{Z Y}[/tex] (given side)

[tex]\overline{P Y} \cong \overline{P Y}[/tex] (reflexive property)

Therefore ΔXYP ≅ ΔZYP by SSS similarity congruence theorem.

Hence proved.