contestada

What is E(r), the radial component of the electric field between the rod and cylindrical shell as a function of the distance r from the axis of the cylindrical rod?

Respuesta :

The value of E(r) will be "[tex]\frac{\lambda}{ 2 \pi \varepsilon_0 r}[/tex]".

According to the question,

  • A conducting cylindrical shell surrounds an infinite long conducting cylindrical rod with something like a positive (+) charge.

By using Gauss law,

→ [tex]E(r)\ \phi \ dA = \frac{q}{\varepsilon_0}[/tex]

or,

→ [tex]E(r) (2 \pi r L) = \frac{q}{\varepsilon_0}[/tex]

           [tex]E(r) = \frac{1}{2 \pi r \varepsilon_0} (\frac{q}{L} )[/tex]

           [tex]E(r) = \frac{\lambda}{2 \pi \varepsilon_0 r}[/tex]

Thus the approach above is appropriate.          

Learn more about cylindrical rod here:

https://brainly.com/question/10727798